New equivalent-electrical circuit model and a practical measurement method for human body impedance.

نویسندگان

  • Koyu Chinen
  • Ichiko Kinjo
  • Aki Zamami
  • Kotoyo Irei
  • Kanako Nagayama
چکیده

Human body impedance analysis is an effective tool to extract electrical information from tissues in the human body. This paper presents a new measurement method of impedance using armpit electrode and a new equivalent circuit model for the human body. The lowest impedance was measured by using an LCR meter and six electrodes including armpit electrodes. The electrical equivalent circuit model for the cell consists of resistance R and capacitance C. The R represents electrical resistance of the liquid of the inside and outside of the cell, and the C represents high frequency conductance of the cell membrane. We propose an equivalent circuit model which consists of five parallel high frequency-passing CR circuits. The proposed equivalent circuit represents alpha distribution in the impedance measured at a lower frequency range due to ion current of the outside of the cell, and beta distribution at a high frequency range due to the cell membrane and the liquid inside cell. The calculated values by using the proposed equivalent circuit model were consistent with the measured values for the human body impedance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivalent Circuit Model for Square Ring Slot Frequency Selective Surface

An equivalent circuit model for predicting the frequency response of a square ring slot frequency selective surface (SRS-FSS) for normal incidence is described. The proposed FSS consists of an array of square patches centered within a wire grid. The presented circuit model is formed by the impedance of the wire grid that is parallel with the impedance of the patch array, also the mutual couplin...

متن کامل

Development of Forward-wave Directional Couplers Loaded by Periodic Shunt Shorted Stubs

In this paper a new procedure for designing forward-wave directional couplers using periodic shunt short circuited stubs is proposed. A new type of cell using these stubs, which enlarge the phase difference between even- and odd modes of a uniform microstrip coupled line is introduced. Using the equivalent circuit model for even- and odd-modes of the proposed cell, the elements of the  ABCD tra...

متن کامل

Closed-Form Solutions for Broad-Band Equivalent Circuit of Vertical Rod Buried in Lossy Grounds Subjected to Lightning Strokes

Abstract— In this paper, input impedance of a vertical rod under lightning stroke is first computed by applying the method of moments (MoM) on the Maxwell’s equations. The circuit model is then achieved through applying modified vector fitting (MVF) on the computed input impedance. After then the equivalent circuit is again extracted for a few values of soil conductivity and rod radius. Finally...

متن کامل

A Novel Field-Circuit FEM Modeling and Channel Gain Estimation for Galvanic Coupling Real IBC Measurements

Existing research on human channel modeling of galvanic coupling intra-body communication (IBC) is primarily focused on the human body itself. Although galvanic coupling IBC is less disturbed by external influences during signal transmission, there are inevitable factors in real measurement scenarios such as the parasitic impedance of electrodes, impedance matching of the transceiver, etc. whic...

متن کامل

مقایسه مدل‌های فراکتال و مفهوم عدم تطابق و واهلش، در بررسی رسانایی یونی

  A simple equivalent circuit to explain the electrical response of an ionic conductor is a parallel circuit consisting of an electrical resistance and a capacitor. Impedance semicircle of such a circuit is exactly a semicircle, but the impedance semicircle of experimental data is a depressed one. To explain this deformed shape of semicircle, usually CPE (constant phase element) is used in equi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bio-medical materials and engineering

دوره 26 Suppl 1  شماره 

صفحات  -

تاریخ انتشار 2015